Biết \[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1,\mathop {\lim }\limits_{x \to 0} g\left( x \right) = \infty \] và \[\mathop {\lim }\limits_{x \to 0} g\left( x \right)\left( {f\left( x \right) - 1} \right) = 2019\]. Tính \[I = \mathop {\lim }\limits_{x \to 0} f{\left( x \right)^{g\left( x \right)}}\].
Trả lời:
Đáp án đúng: C
Ta có:
\[I = \mathop {\lim }\limits_{x \to 0} f{\left( x \right)^{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 0} {e^{g\left( x \right)\ln f\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to 0} g\left( x \right)\ln f\left( x \right)}}.\]
Xét:
\[\mathop {\lim }\limits_{x \to 0} g\left( x \right)\ln f\left( x \right) = \mathop {\lim }\limits_{x \to 0} g\left( x \right)\ln \left( {1 + f\left( x \right) - 1} \right) = \mathop {\lim }\limits_{x \to 0} g\left( x \right)\left( {f\left( x \right) - 1} \right) = 2019.\]
Vậy \[I = {e^{2019}}\].





