JavaScript is required

Biết \[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1,\mathop {\lim }\limits_{x \to 0} g\left( x \right) = \infty \] và \[\mathop {\lim }\limits_{x \to 0} g\left( x \right)\left( {f\left( x \right) - 1} \right) = 2019\]. Tính \[I = \mathop {\lim }\limits_{x \to 0} f{\left( x \right)^{g\left( x \right)}}\].

A.

e

B.

e2020

C.

e2019

D.

–e2019

Trả lời:

Đáp án đúng: C


Ta có: \[I = \mathop {\lim }\limits_{x \to 0} f{\left( x \right)^{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 0} {e^{g\left( x \right)\ln f\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to 0} g\left( x \right)\ln f\left( x \right)}}.\] Xét: \[\mathop {\lim }\limits_{x \to 0} g\left( x \right)\ln f\left( x \right) = \mathop {\lim }\limits_{x \to 0} g\left( x \right)\ln \left( {1 + f\left( x \right) - 1} \right) = \mathop {\lim }\limits_{x \to 0} g\left( x \right)\left( {f\left( x \right) - 1} \right) = 2019.\] Vậy \[I = {e^{2019}}\].

Câu hỏi liên quan