Một con lắc lò xo với vật nặng có khối lượng m đang dao động điều hòa theo phương thẳng đứng. Chọn gốc thế năng đàn hồi tại vị trí lò xo không biến dạng. Đồ thị động năng, thế năng đàn hồi của lò xo – thời gian được cho như hình vẽ. Lấy \({\pi ^2} = 10\). Khối lượng của vật nặng là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
Từ đồ thị, ta có:
\(T = 2\pi \sqrt {\frac{{\Delta {l_0}}}{g}} = 0,4\)s→\(\Delta {l_0} = 4\)cm và \(\omega = 5\pi \)rad/s
\({E_{dmax}} = 0,64J\)
\(\frac{{{E_{d{h_{max}}}}}}{{{E_{dmax}}}} = \frac{9}{4}\)→\(\frac{{{{\left( {A + \Delta {l_0}} \right)}^2}}}{{{A^2}}} = \frac{9}{4}\) →\(A = 2\Delta {l_0} = 2.4 = 8\)cm
→ Khối lượng của vật nặng \({E_{dmax}} = \frac{1}{2}m{\omega ^2}{A^2}\) \(m = \frac{{2{E_{dmax}}}}{{{\omega ^2}{A^2}}} = \frac{{2.0,64}}{{{{\left( {5\pi } \right)}^2}{{\left( {{{8.10}^{ - 2}}} \right)}^2}}} = 0,8\)kg
Đề thi thử tốt nghiệp THPT QG 2020 môn Vật lý
Đề tuyển chọn số 2