Hai người A và B ở cách nhau 180m trên một đoạn đường thẳng và cùng chuyển động thẳng theo một hướng với vận tốc biến thiên theo thời gian, A chuyện động với vận tốc \({v_1}\left( t \right) = 6t + 5\left( {m/s} \right)\), B chuyển động với vận tốc \({v_2}\left( t \right) = 2at - 3\left( {m/s} \right)\) (a là hằng số), trong đó t (giây) là khoảng thời gian từ lúc A, B bắt đầu chuyển động. Biết rằng lúc đầu A đuổi theo B và sau 10 (giây) thì đuổi kịp. Hỏi sau 20 giây, A cách B bao nhiêu mét?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiQuãng đường người A đi được trong 10 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{10} {\left( {6t + 5} \right)dt = 350m} \)
Quãng đường người B đi được trong 10 giây kể từ khi bắt đầu chuyển động là
\(\int\limits_0^{10} {\left( {2at - 3} \right)dt = \left( {a.{t^2} - 3t} \right)} \left| \begin{array}{l}
^{10}\\
_0
\end{array} \right. = 100a - 30\)
Vì sau 10 giây người A đuổi kịp người B và người A lúc ban đầu cách người B là 180m nên ta có phương trình \(10a - 30 + 180 = 350 \Leftrightarrow a = 2\) suy ra \({v_2}\left( t \right) = 4t - 3\left( {m/s} \right)\)
Quãng đường người A đi được trong 20 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{20} {\left( {6t + 5} \right)dt = 1300m} \)
Quãng đường người B đi được trong 20 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{20} {\left( {4t - 3} \right)dt = 740m} \)
Khoảng cách giữa hai người A và người B sau 20 giây là \(1300 - 180 - 740 = 380\left( m \right)\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Lương Thế Vinh - Hà Nội lần 2