Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a % qpdaWcaaqaaiaadIhacqGHRaWkcaaIXaaabaGaamiEaiabgkHiTiaa % ikdaaaaaaa!3DBB! y = \frac{{x + 1}}{{x - 2}}\) và các trục tọa độ bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình hoành độ giao điểm của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a % qpdaWcaaqaaiaadIhacqGHRaWkcaaIXaaabaGaamiEaiabgkHiTiaa % ikdaaaaaaa!3DBB! y = \frac{{x + 1}}{{x - 2}}\) và trục hoành: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam % iEaiabgUcaRiaaigdaaeaacaWG4bGaeyOeI0IaaGOmaaaacqGH9aqp % caaIWaGaaGPaVpaabmaabaGaamiEaabaaaaaaaaapeGafyypa0JbaO % aacaaIYaaapaGaayjkaiaawMcaaaaa!438A! \frac{{x + 1}}{{x - 2}} = 0\,\left( {x\not = 2} \right)\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBlaadI % hacqGH9aqpcqGHsislcaaIXaaaaa!3C6E! \Leftrightarrow x = - 1\)
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a % qpdaWcaaqaaiaadIhacqGHRaWkcaaIXaaabaGaamiEaiabgkHiTiaa % ikdaaaaaaa!3DBB! y = \frac{{x + 1}}{{x - 2}}\) và các trục tọa độ bằng:
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % abdaqaamaalaaabaGaamiEaiabgUcaRiaaigdaaeaacaWG4bGaeyOe % I0IaaGOmaaaaaiaawEa7caGLiWoaaSqaaiabgkHiTiaaigdaaeaaca % aIWaaaniabgUIiYdGccaqGKbGaamiEaaaa!46F5! \int\limits_{ - 1}^0 {\left| {\frac{{x + 1}}{{x - 2}}} \right|} {\rm{d}}x\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaq % WaaeaadaWdXbqaamaalaaabaGaamiEaiabgUcaRiaaigdaaeaacaWG % 4bGaeyOeI0IaaGOmaaaaaSqaaiabgkHiTiaaigdaaeaacaaIWaaani % abgUIiYdGccaqGKbGaamiEaaGaay5bSlaawIa7aaaa!47FB! = \left| {\int\limits_{ - 1}^0 {\frac{{x + 1}}{{x - 2}}} {\rm{d}}x} \right|\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaq % WaaeaadaWdXbqaamaabmaabaGaaGymaiabgUcaRmaalaaabaGaaG4m % aaqaaiaadIhacqGHsislcaaIYaaaaaGaayjkaiaawMcaaaWcbaGaey % OeI0IaaGymaaqaaiaaicdaa0Gaey4kIipakiaabsgacaWG4baacaGL % hWUaayjcSdaaaa!4944! = \left| {\int\limits_{ - 1}^0 {\left( {1 + \frac{3}{{x - 2}}} \right)} {\rm{d}}x} \right|\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaq % WaaeaadaabcaqaamaabmaabaGaamiEaiabgUcaRiaaiodaciGGSbGa % aiOBamaaemaabaGaamiEaiabgkHiTiaaikdaaiaawEa7caGLiWoaai % aawIcacaGLPaaaaiaawIa7amaaDaaaleaacqGHsislcaaIXaaabaGa % aGimaaaaaOGaay5bSlaawIa7aaaa!4BF2! = \left| {\left. {\left( {x + 3\ln \left| {x - 2} \right|} \right)} \right|_{ - 1}^0} \right|\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaq % WaaeaacaaIXaGaey4kaSIaaG4maiGacYgacaGGUbWaaSaaaeaacaaI % YaaabaGaaG4maaaaaiaawEa7caGLiWoaaaa!41B9! = \left| {1 + 3\ln \frac{2}{3}} \right|\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaey % OeI0IaaGymaiabgkHiTiaaiodaciGGSbGaaiOBamaalaaabaGaaGOm % aaqaaiaaiodaaaaaaa!3F8F! = - 1 - 3\ln \frac{2}{3}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepeuj0xe9Fve9 % Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG % 4maiGacYgacaGGUbWaaSaaaeaacaaIZaaabaGaaGOmaaaacqGHsisl % caaIXaaaaa!3EA2! = 3\ln \frac{3}{2} - 1\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 3