Cho hai điểm A(3;3;1),B(0;2;1), mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaadIhacqGHRaWkcaWG5bGaey4k % aSIaamOEaiabgkHiTiaaiEdacqGH9aqpcaaIWaaaaa!413C! \left( P \right):x + y + z - 7 = 0\). Đường thẳng d nằm trên (P) sao cho mọi điểm của d cách đều hai điểm A,B có phương trình là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGbbGaamOqaaGaay51GaGaeyypa0ZaaeWaaeaacqGHsislcaaIZaGa % ai4oaiabgkHiTiaaigdacaGG7aGaaGimaaGaayjkaiaawMcaaaaa!414E! \overrightarrow {AB} = \left( { - 3; - 1;0} \right)\); \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaabm % aabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGG7aWaaSaaaeaacaaI % 1aaabaGaaGOmaaaacaGG7aGaaGymaaGaayjkaiaawMcaaaaa!3D98! I\left( {\frac{3}{2};\frac{5}{2};1} \right)\) là trung điểm của AB.
Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) là mặt phẳng trung trực của AB và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaey % ypa0ZaaeWaaeaacqaHXoqyaiaawIcacaGLPaaacqGHPiYXdaqadaqa % aiaadcfaaiaawIcacaGLPaaaaaa!3F84! \Delta = \left( \alpha \right) \cap \left( P \right)\). Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa!375A! \Delta \) chính là đường thẳng thuộc mặt phẳng (P) và cách đều hai điểm A,B.
Phương trình mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) đi qua \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaabm % aabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGG7aWaaSaaaeaacaaI % 1aaabaGaaGOmaaaacaGG7aGaaGymaaGaayjkaiaawMcaaaaa!3D98! I\left( {\frac{3}{2};\frac{5}{2};1} \right)\) và có véc tơ pháp tuyến là:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGbbGaamOqaaGaay51GaGaeyypa0ZaaeWaaeaacqGHsislcaaIZaGa % ai4oaiabgkHiTiaaigdacaGG7aGaaGimaaGaayjkaiaawMcaaaaa!414E! \overrightarrow {AB} = \left( { - 3; - 1;0} \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG % 4mamaabmaabaGaamiEaiabgkHiTmaalaaabaGaey4mamdabaGaaGOm % aaaaaiaawIcacaGLPaaacqGHsisldaqadaqaaiaadMhacqGHsislda % WcaaqaaiaaiwdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabg2da9iaa % icdacqGHuhY2caaIZaGaamiEaiabgUcaRiaadMhacqGHsislcaaI3a % Gaeyypa0JaaGimaaaa!4DDF! - 3\left( {x - \frac{3}{2}} \right) - \left( {y - \frac{5}{2}} \right) = 0 \Leftrightarrow 3x + y - 7 = 0\)
Khi đó d là đường giao tuyến của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) và (P).
Véctơ chỉ phương của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWhcaqaaiaadwhadaWgaaWcbaGaamizaaqabaaakiaawEniaiab % g2da9maadmaabaWaa8HaaeaacaWGUbWaaSbaaSqaamaabmaabaGaeq % ySdegacaGLOaGaayzkaaaabeaaaOGaay51GaGaaiilamaaFiaabaGa % amOBamaaBaaaleaadaqadaqaaiaadcfaaiaawIcacaGLPaaaaeqaaa % GccaGLxdcaaiaawUfacaGLDbaacqGH9aqpdaqadaqaaiabgkHiTiaa % igdacaGG7aGaaG4maiaacUdacqGHsislcaaIYaaacaGLOaGaayzkaa % Gaeyypa0JaeyOeI0YaaeWaaeaacaaIXaGaai4oaiabgkHiTiaaioda % caGG7aGaaGOmaaGaayjkaiaawMcaaaaa!5A85! d:\overrightarrow {{u_d}} = \left[ {\overrightarrow {{n_{\left( \alpha \right)}}} ,\overrightarrow {{n_{\left( P \right)}}} } \right] = \left( { - 1;3; - 2} \right) = - \left( {1; - 3;2} \right)\), d đi qua \(C(0;7;0)\).
Vậy d có phương trình tham số là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadIhacqGH9aqpcaWG0baabaGaamyEaiabg2da9iaaiEdacqGH % sislcaaIZaGaamiDaaqaaiaadQhacqGH9aqpcaaIYaGaamiDaaaaca % GL7baaaaa!4334! \left\{ \begin{array}{l} x = t\\ y = 7 - 3t\\ z = 2t \end{array} \right.\) ( t là tham số).
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 3