Có bao nhiêu số nguyên \(a\left( a\ge 2 \right)\) sao cho tồn tại số thực x thỏa mãn \({{\left( {{a}^{\log x}}+2 \right)}^{\log a}}=x-2?\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \({{\left( {{a}^{\log x}}+2 \right)}^{\log a}}=x-2\Leftrightarrow {{\left( {{x}^{\log a}}+2 \right)}^{\log a}}=x-2\)
Đặt \(b=\log a\Leftrightarrow a={{10}^{b}}.\) Vì \(a\ge 2\Rightarrow b\ge \log 2>0.\)
Phương trình đã cho trở thành:
\({{\left( {{x}^{b}}+2 \right)}^{b}}=x-2\Leftrightarrow {{\left( {{x}^{b}}+2 \right)}^{b}}+\left( {{x}^{b}}+2 \right)={{x}^{b}}+x\left( * \right).\)
Xét hàm số \(f\left( t \right)={{t}^{b}}+t\) ta có \(f'\left( t \right)=b{{t}^{b-1}}+1>0\Rightarrow \) Hàm số \(y=f\left( t \right)\) đồng biến trên \(\mathbb{R}.\)
Do đó \(\left( * \right)\Leftrightarrow {{x}^{b}}+2=x\Leftrightarrow {{x}^{\log a}}=x-2\left( ** \right).\)
Với \(\log a\ge 1\) ta có đồ thị hàm số như sau:
⇒ Phương trình \(\left( ** \right)\) vô nghiệm.
Với \(\log a<1\) ta có đồ thị hàm số như sau:
⇒ Phương trình \(\left( ** \right)\) có nghiệm ⇒ Thỏa mãn.
\(\Rightarrow \log a<1\Leftrightarrow a<10.\) Kết hợp điều kiện đề bài ta có \(a\in \left\{ 2;3;4;...;9 \right\}.\)
Vậy có 8 giá trị của a thỏa mãn yêu cầu bài toán.