Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình sau nghiệm đúng \(\forall x \in \mathbb{R}\): \({\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiChia cả 2 vế của bất phương trình cho \({2^x} > 0\) ta được: \({\left( {3 + \sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {\dfrac{{3 - \sqrt 7 }}{2}} \right)^x} - \left( {m + 1} \right) \ge 0\)
Nhận xét: \({\left( {3 + \sqrt 7 } \right)^x}.{\left( {\dfrac{{3 - \sqrt 7 }}{2}} \right)^x} = 1\), do đó khi ta đặt \(t = {\left( {3 + \sqrt 7 } \right)^x}\,\,\left( {t > 0} \right) \Rightarrow {\left( {\dfrac{{3 - \sqrt 7 }}{2}} \right)^x} = \dfrac{1}{t}\).
Phương trình trở thành : \(t + \left( {2 - m} \right)\dfrac{1}{t} - \left( {m + 1} \right) \ge 0 \Leftrightarrow {t^2} - \left( {m + 1} \right)t + 2 - m \ge 0\)
\( \Leftrightarrow {t^2} - t + 2 \ge m\left( {t + 1} \right) \Leftrightarrow m \le \dfrac{{{t^2} - t + 2}}{{t + 1}} = f\left( t \right)\,\,\forall t > 0 \Leftrightarrow m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right)\).
Xét hàm số \(f\left( t \right) = \dfrac{{{t^2} - t + 2}}{{t + 1}}\,\,\left( {t > 0} \right)\) ta có : \(f'\left( t \right) = \dfrac{{\left( {2t - 1} \right)\left( {t + 1} \right) - {t^2} + t - 2}}{{{{\left( {t + 1} \right)}^2}}} = \dfrac{{{t^2} + 2t - 3}}{{{{\left( {t + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 3\end{array} \right.\)
BBT :
Từ BBT \( \Rightarrow m \le 1\).
Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 10;1} \right]\end{array} \right. \Rightarrow \) có 12 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Quý Cáp