Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) và \(f\left( 2 \right) = 16\); \(\int\limits_0^2 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_0^1 {xf'\left( {2x} \right)dx} \)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t = 2x \Rightarrow dt = 2dx\).
Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 2\end{array} \right. \Rightarrow I = \int\limits_0^2 {\dfrac{t}{2}.f'\left( t \right)\dfrac{{dt}}{2}} = \dfrac{1}{4}\int\limits_0^2 {tf'\left( t \right)dt} \)
Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\)
\( \Rightarrow I = \dfrac{1}{4}\left[ {\left. {tf\left( t \right)} \right|_0^2 - \int\limits_0^2 {f\left( t \right)dt} } \right] = \dfrac{1}{4}\left[ {2f\left( 2 \right) - 4} \right] = \dfrac{1}{4}\left( {2.16 - 4} \right) = 7\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Quý Cáp