Có bao nhiêu giá trị m nguyên thuộc đoạn \(\left[ { - 2018{\rm{ ; 2019}}} \right]\) để hàm số \(y = {x^3} - 2{x^2} - \left( {2m - 5} \right)x + 5\) đồng biến trên khoảng \(\left( {0{\rm{ ; + }}\infty } \right)\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(y' = 3{x^2} - 4x - 2m + 5\)
Hàm số đồng biến trên khoảng \(\left( {0{\rm{; + }}\infty } \right) \Leftrightarrow y' \ge 0,{\rm{ }}\forall x \in {\rm{ }}\left( {{\rm{0; + }}\infty } \right)\)
\( \Leftrightarrow 3{x^2} - 4x - 2m + 5 \ge 0{\rm{ ,}}\forall x \in \left( {{\rm{0; + }}\infty } \right) \Leftrightarrow 3{x^2} - 4x \ge 2m - 5{\rm{ ,}}\forall x \in \left( {{\rm{0; + }}\infty } \right)\)
Xét hàm số \(f\left( x \right) = 3{x^2} - 4x\) trên \(\left( {0{\rm{; + }}\infty } \right)\), ta có \(f'\left( x \right) = 6x - 4 = 0 \Leftrightarrow x = \frac{2}{3}\)
Vẽ bảng biến thiến
Từ bảng trên suy ra \(3{x^2} - 4x \ge 2m - 5{\rm{ ,}}\forall x \in {\rm{ }}\left( {{\rm{0; + }}\infty } \right)\) \( \Leftrightarrow 2m - 5 \le - \frac{4}{3} \Leftrightarrow m \le \frac{{11}}{6}\).
Do m nguyên và \(m \in \left[ { - 2018{\rm{ ; 2019}}} \right] \Rightarrow m \in \left\{ { - 2018; - 2017; - 2016,....,0,1} \right\}\)
Vậy có 2020 giá trị m thỏa mãn đề bài.