Cho phương trình \({4^{ - \left| {x - m} \right|}}{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{ - {x^2} + 2x}}{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\). Gọi S là tập hợp tất cả các giá trị của m để phương trình có 3 nghiệm thực phân biệt. Tổng các phần tử của S bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện xác định: \(x \in R\).
Xét phương trình \({4^{ - \left| {x - m} \right|}}{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{ - {x^2} + 2x}}{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right)\)
\(\begin{array}{l} \left( 1 \right) \Leftrightarrow {2^{ - 2\left| {x - m} \right| + 1}}.{\log _{\sqrt 2 }}\left[ {\left( {{x^2} - 2x + 1} \right) + 2} \right] = {2^{ - \left( {{x^2} - 2x + 1} \right)}}.{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\\ \;\;\;\;\; \Leftrightarrow {2^{{x^2} - 2x + 1}}.o{g_{\sqrt 2 }}\left[ {\left( {{x^2} - 2x + 1} \right) + 2} \right] = {2^{2\left| {x - m} \right|}}.{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\;\;\;\;\;\;\;\;\;\left( 2 \right) \end{array}\)
Xét hàm số: \(f\left( t \right) = {2^t}{\log _2}\left( {t + 2} \right),\;t > 2.\)
Ta có \(f'\left( t \right) = {2^t}.\ln 2.{\log _2}\left( {t + 2} \right) + {2^t}.\frac{1}{{\left( {t + 2} \right)\ln 2}} > 0\;\forall t \ge 0.\)
Mà f(t) liên tục trên \(\left[ {0; + \infty } \right)\) suy ra f(t) đồng biến trên \(\left[ {0; + \infty } \right)\).
Phương trình (2) có dạng \(f\left( {{x^2} - 2x + 1} \right) = f\left( {2\left| {x - m} \right|} \right)\) và \({x^2} - 2x + 1 = \left( {x - 1} \right) \ge 0;\;2\left| {x - m} \right| \ge 0,\;\forall x \in R.\)
Do đó \(\left( 2 \right) \Leftrightarrow {x^2} - 2x + 1 = 2\left| {x - m} \right| \Leftrightarrow \left[ \begin{array}{l} {x^2} - 2x + 1 = 2\left( {x - m} \right)\\ {x^2} - 2x + 1 = 2\left( {m - x} \right) \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} {x^2} - 4x + 1 = - 2m\;\;\;\left( * \right)\\ - {x^2} - 1 = - 2m\;\;\;\;\;\;\;\left( {**} \right) \end{array} \right.\)
Phương trình (1) có 3 nghiệm thực phân biệt khi và chỉ khi (2) có 3 nghiệm phân biệt.
Dựng các parabol: \(y = {x^2} - 4x + 1\;\left( {{P_1}} \right)\) và \(y = - {x^2} - 1\;\left( {{P_2}} \right)\) trên cùng 1 hệ trục tọa độ.
Số lượng nghiệm của (*) và (**) bằng số giao điểm của đường thẳng d:y = - 2m lần lượt với các đồ thị (P1) và (P2).
Dựa vào đồ thị có thể thấy phương trình đã cho có đúng 3 nghiệm phân biệt thì d phải nằm ở các vị trí của \({d_1},{d_2},{d_3}\).
Tương ứng khi đó:
\(\begin{array}{l} - 2m = - 1 \Leftrightarrow m = \frac{1}{2}\\ - 2m = - 2 \Leftrightarrow m = 1\\ - 2m = - 3 \Leftrightarrow m = \frac{3}{2} \end{array}\)
Do đó có 3 giá trị m thỏa mãn yêu cầu: \(m = \frac{1}{2};\;m = 1;\;m = \frac{3}{2}.\)
Vậy \(S = \left\{ {\frac{1}{2};1;\frac{3}{2}} \right\}.\)