Cho \({\log _8}\left| x \right| + {\log _4}{y^2} = 5\) và \({\log _8}\left| y \right| + {\log _4}{x^2} = 7.\) Tìm giá trị của biểu thức \(P = \left| x \right| - \left| y \right|.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(x,\;y \ne 0.\)
Theo đề bài ta có hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}{\log _8}\left| x \right| + {\log _4}{y^2} = 5\\{\log _8}\left| y \right| + {\log _4}{x^2} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{3}{\log _2}\left| x \right| + {\log _2}\left| y \right| = 5\\\frac{1}{3}{\log _2}\left| y \right| + {\log _2}\left| x \right| = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\log _2}\left| x \right| + {\log _2}{\left| y \right|^3} = 15\\{\log _2}\left| y \right| + {\log _2}{\left| x \right|^3} = 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _2}\left| {x{y^3}} \right| = 15\\{\log _2}\left| {{x^3}y} \right| = 21\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left| {x{y^3}} \right| = {2^{15}}\,\,\left( * \right)\\\left| {{x^3}y} \right| = {2^{21}}\end{array} \right. \Leftrightarrow \frac{{\left| {{x^3}y} \right|}}{{\left| {x{y^3}} \right|}} = 64 \Leftrightarrow {\left| {\frac{x}{y}} \right|^2} = 64 \Leftrightarrow \left| {\frac{x}{y}} \right| = 8 \Leftrightarrow \left| x \right| = 8\left| y \right|\end{array}\)
Thay vào (*) ta có \(8{y^4} = {2^{15}} \Leftrightarrow \left| y \right| = \sqrt[4]{{4096}} = 8\)
Khi đó ta có \(P = \left| x \right| - \left| y \right| = 8\left| y \right| - \left| y \right| = 7\left| y \right| = 7.8 = 56\)
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Quý Cáp