Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi \({M}'\), \({N}'\), \({P}'\), \({Q}'\) lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng \(\left( ABCD \right)\). Tính tỉ số \(\frac{SM}{SA}\) để thể tích khối đa diện \(MNPQ.{M}'{N}'{P}'{Q}'\) đạt giá trị lớn nhất.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(\frac{SM}{SA}=k\) với \(k\in \left[ 0;1 \right]\).
Xét tam giác SAB có \(MN\text{//}AB\) nên \(\frac{MN}{AB}=\frac{SM}{SA}=k\)\(\Rightarrow MN=k.AB\)
Xét tam giác SAD có \(MQ\text{//}AD\) nên \(\frac{MQ}{AD}=\frac{SM}{SA}=k\)\(\Rightarrow MQ=k.AD\)
Kẻ đường cao SH của hình chóp. Xét tam giác SAH có:
\(M{M}'\text{//}SH\) nên \(\frac{M{M}'}{SH}=\frac{AM}{SA}=\frac{SA-SM}{SA}=1-\frac{SM}{SA}=1-k\)\(\Rightarrow M{M}'=\left( 1-k \right).SH\).
Ta có \({{V}_{MNPQ.{M}'{N}'{P}'{Q}'}}=MN.MQ.M{M}'=AB.AD.SH.{{k}^{2}}.\left( 1-k \right)\).
Mà \({{V}_{S.ABCD}}=\frac{1}{3}SH.AB.AD\) \(\Rightarrow {{V}_{MNPQ.{M}'{N}'{P}'{Q}'}}=3.{{V}_{S.ABCD}}.{{k}^{2}}.\left( 1-k \right)\).
Thể tích khối chóp không đổi nên \({{V}_{MNPQ.{M}'{N}'{P}'{Q}'}}\) đạt giá trị lớn nhất khi \({{k}^{2}}.\left( 1-k \right)\) lớn nhất.
Ta có \({{k}^{2}}.\left( k-1 \right)=\frac{2\left( 1-k \right).k.k}{2}\le \frac{1}{2}{{\left( \frac{2-2k+k+k}{3} \right)}^{3}}\)\(\Rightarrow {{k}^{2}}.\left( k-1 \right)\le \frac{4}{27}\).
Đẳng thức xảy ra khi và chỉ khi: \(2\left( 1-k \right)=k\)\(\Leftrightarrow k=\frac{2}{3}\).
Vậy \(\frac{SM}{SA}=\frac{2}{3}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT ChuyênThái Bình lần 3