Cho hình chóp tam giác đều có cạnh đáy bằng \(\sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi O là tâm của tam giác ABC suy ra \(SO \bot \left( {ABC} \right)\) và \(SO = h = 1;OA = \frac{2}{3} \cdot \sqrt 6 \cdot \frac{{\sqrt 3 }}{2} = \sqrt 2 \)
Trong tam giác vuông SAO, ta có \(SA = \sqrt {S{O^2} + O{A^2}} = \sqrt {1 + 2} = \sqrt 3 \).
Trong mặt phẳng (SAO) kẻ trung trực của đoạn SA cắt SO tại I, suy ra IS = IA = IB = IC nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABC.
Gọi H là trung điểm của SA, ta có tam giác SHI đồng dạng với tam giác SOA nên \(R = IS = \frac{{SH.SA}}{{SO}} = \frac{{\frac{{\sqrt 3 }}{2} \cdot \sqrt 3 }}{1} = \frac{3}{2}\)
Vậy diện tích mặt cầu \({S_{mc}} = 4\pi {R^2} = 9\pi \).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Gia Viễn B