Cho hình chóp \(S.ABCD\) có đáy là hình bình hành và có thể tích là V. Gọi M là trung điểm của \(SB.\) P là điểm thuộc cạnh \(SD\) sao cho \(SP=2DP.\) Mặt phẳng \(\left( AMP \right)\) cắt cạnh \(SC\) tại N. Tính thể tích của khối đa diện \(ABCDMNP\) theo V.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTrong \(\left( ABCD \right)\) gọi \(O=AC\cap BD.\)
Trong \(\left( SBD \right)\) gọi \(I=SO\cap MP.\)
Trong \(\left( SAC \right)\) gọi \(N=SC\cap AI.\)
Trong \(\left( SBD \right),\) qua M kẻ đường thẳng song song với BD cắt SO tại H, qua P kẻ đường thẳng song song với BD cắt SO tại K.
Gọi T là trung điểm NC.
Ta có: \(\frac{IH}{IK}=\frac{MH}{PK}=\frac{\frac{1}{2}BO}{\frac{2}{3}BO}=\frac{3}{4}.\)
\(HK=SO-SH-OK=SO-\frac{1}{2}SO-\frac{1}{3}SO=\frac{1}{6}SO.\)
\(\frac{IH}{3}=\frac{IK}{4}=\frac{IH+IK}{7}=\frac{\frac{1}{6}SO}{7}=\frac{1}{42}SO.\)
\(\frac{SI}{SO}=\frac{SH+IH}{SO}=\frac{\frac{1}{2}SO+\frac{1}{14}SO}{SO}=\frac{4}{7}.\)
\(\Rightarrow \frac{SN}{ST}=\frac{4}{7}.\)
\(\Rightarrow \frac{SN}{SC}=\frac{4}{10}=\frac{2}{5}.\)
\(\frac{{{V}_{S.AMNP}}}{{{V}_{S.ABCD}}}=\frac{1}{2}\left[ \frac{{{V}_{S.AMN}}}{{{S}_{S.ACB}}}+\frac{{{V}_{S.ANP}}}{{{V}_{S.ACD}}} \right]=\frac{1}{2}\left[ \frac{SM}{SB}.\frac{SN}{SC}+\frac{SP}{SD}.\frac{SN}{SC} \right]=\frac{1}{2}\left[ \frac{1}{2}.\frac{2}{5}+\frac{2}{5}.\frac{2}{3} \right]=\frac{7}{30}.\)
\({{V}_{ABCD.AMNP}}={{V}_{S.ABCD}}-{{V}_{S.AMNP}}=V-\frac{7}{20}V=\frac{23}{30}V.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Lương Tài lần 3