Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,BC=2a,BA=a\sqrt{3}.\) Biết tam giác \(SAB\) vuông tại \(A,\) tam giác \(SBC\) cân tại \(S,\left( SAB \right)\) tạo với mặt phẳng \(\left( SBC \right)\) một góc \(\varphi \) thỏa mãn \(\sin \varphi =\sqrt{\frac{20}{21}}.\) Thể tích của khối chóp \(S.ABC\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+ Gọi \(M\) là trung điểm của \(BC,\) dựng hình chữ nhật \(ABMH\)
Khi đó \(\left\{ \begin{array}{l} AB \bot SH\\ BC \bot SH \end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\)
Kẻ \(HI\bot SA\Rightarrow HI\bot \left( SAB \right).\)
\(HJ\bot SM\Rightarrow HJ\bot \left( SBC \right)\)
\(\Rightarrow \left( \left( SAB \right),\left( SBC \right) \right)=\angle IHJ.\)
+ Đặt \(SH=x\Rightarrow HI=\frac{ax}{\sqrt{{{a}^{2}}+{{x}^{2}}}};HJ=\frac{a\sqrt{3}a}{\sqrt{3{{a}^{2}}+{{x}^{2}}}};SI=\frac{{{x}^{2}}}{\sqrt{{{a}^{2}}+{{x}^{2}}}};SJ=\frac{{{x}^{2}}}{\sqrt{3{{a}^{2}}+{{x}^{2}}}}.\)
\(\cos ASM=\frac{{{x}^{2}}}{\sqrt{{{a}^{2}}+{{x}^{2}}}.\sqrt{3{{a}^{2}}+{{x}^{2}}}};I{{J}^{2}}=S{{I}^{2}}+S{{J}^{2}}-2SI.SJ.\cos ASM=\frac{4{{a}^{2}}{{x}^{4}}}{\left( {{a}^{2}}+{{x}^{2}} \right)\left( 3{{a}^{2}}+{{x}^{2}} \right)}\)
\(\sin \varphi =\sqrt{\frac{20}{21}}\Rightarrow \cos \varphi =\sqrt{\frac{1}{21}}.\)
\(\cos \varphi =\frac{H{{I}^{2}}+H{{J}^{2}}-I{{J}^{2}}}{2HI.HJ}\)
\(\Leftrightarrow \frac{2}{\sqrt{21}}.\frac{ax}{\sqrt{{{a}^{2}}+{{x}^{2}}}}.\frac{a\sqrt{3}a}{\sqrt{3{{a}^{2}}+{{x}^{2}}}}=\frac{{{a}^{2}}{{x}^{2}}}{{{a}^{2}}+{{x}^{2}}}+\frac{3{{a}^{2}}{{x}^{2}}}{3{{a}^{2}}+{{x}^{2}}}-\frac{4{{a}^{2}}{{x}^{4}}}{\left( {{a}^{2}}+{{x}^{2}} \right)\left( 3{{a}^{2}}+{{x}^{2}} \right)}\)
\(\Leftrightarrow \frac{2}{\sqrt{7}}\sqrt{{{a}^{2}}+{{x}^{2}}}.\sqrt{3{{a}^{2}}+{{x}^{2}}}=6{{a}^{2}}\Leftrightarrow x=a\sqrt{6}.\)
\({{V}_{S.ABC}}=\frac{1}{3}SH.{{S}_{ABC}}={{a}^{3}}\sqrt{2}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Lý Thái Tổ lần 3