Cho hàm số y = f(x) có bảng biến thiên như hình bên. Phương trình \(f\left( {4x - {x^2}} \right) - 2 = 0\) có bao nhiêu nghiệm thực phân biệt?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiBảng biến thiên của f(x)
Từ bảng biến thiên suy ra phương trình f(x) = 2 có ba nghiệm thực phân biệt \({x_1},{x_2},{x_3}\) với \({x_1} < 0 < {x_2} < 4 < {x_3}.\)
Do đó \(f\left( {4x - {x^2}} \right) - 2 = 0 \Leftrightarrow f\left( {4x - {x^2}} \right) = 2\left[ \begin{array}{l} 4x - {x^2} = {x_1}\,\,\left( 1 \right)\\ 4x - {x^2} = {x_2}\,\,\left( 2 \right)\\ 4x - {x^2} = {x_3}\,\,\left( 3 \right) \end{array} \right.\) với \({x_1} < 0 < {x_2} < 4 < {x_3}.\)
Xét hàm số \(g\left( x \right) = 4x - {x^2}\). Có \(g'\left( x \right) = 4 - 2x,g\left( x \right) = 0 \Leftrightarrow x = 2.\).
Bảng biến thiên của g(x):
Từ bảng biến thiên của g(x) suy ra phương trình (1) có hai nghiệm thực phân biệt, phương trình (2) có hai nghiệm thực phân biệt (không trùng với hai nghiệm của (1) do x1 < x2) và phương trình (3) vô nghiệm.
Vậy phương trình đã cho có 4 nghiệm thực phân biệt.