Cho hàm số \(f(x)={{x}^{3}}-3{{x}^{2}}+{{m}^{2}}-2m\). Gọi S tập hợp tất cả các giá trị nguyên của tham số m thỏa mãn \(3\underset{\left[ -3;1 \right]}{\mathop{\text{max}}}\,f\left( \left| x \right| \right)+2\underset{\left[ -3;1 \right]}{\mathop{\min }}\,f\left( \left| x \right| \right)\le 112\). Số phần tử của S bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(f\left( \left| x \right| \right)={{\left| x \right|}^{3}}-3{{\left| x \right|}^{2}}+{{m}^{2}}-2m\) (1). Đặt \(t=\left| x \right|; x\in \left[ -3;1 \right]\Rightarrow t\in \left[ 0;3 \right]\).
Hàm số (1) trở thành \(f\left( t \right)={{t}^{3}}-3{{t}^{2}}+{{m}^{2}}-2m, t\in \left[ 0;3 \right]; {f}'\left( t \right)=3{{t}^{2}}-6t=0\Leftrightarrow t=2\).
Ta có: \(f\left( 0 \right)={{m}^{2}}-2m; f\left( 2 \right)={{m}^{2}}-2m-4; f\left( 3 \right)={{m}^{2}}-2m\).
Suy ra \(\left\{ \begin{array}{l} \mathop {\min }\limits_{\left[ { - 3;1} \right]} f\left( {\left| x \right|} \right) = \mathop {\min }\limits_{\left[ {0;3} \right]} f\left( t \right) = {m^2} - 2m - 4\\ \mathop {\max }\limits_{\left[ { - 3;1} \right]} f\left( {\left| x \right|} \right) = \mathop {\max }\limits_{\left[ {0;3} \right]} f\left( t \right) = {m^2} - 2m \end{array} \right.\)
Ta có: \(3\underset{\left[ -3;1 \right]}{\mathop{\max }}\,f\left( \left| x \right| \right)+2\underset{\left[ -3;1 \right]}{\mathop{\min }}\,f\left( \left| x \right| \right)\le 112\Leftrightarrow 3\left( {{m}^{2}}-2m \right)+2\left( {{m}^{2}}-2m-4 \right)\le 112\)
\(\Leftrightarrow 5{{m}^{2}}-10m-120\le 0\Leftrightarrow -4\le m\le 6\).
Vì \(m\in \mathbb{Z}\) nên \(m\in \left\{ -4;-3;...;6 \right\}\).
Vậy có 11 giá trị của m thỏa mãn yêu cầu bài toán
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Ấp Bắc lần 3