Cho hàm số \(f\left( x \right)\) liên tục trên tập số thực và có \(f\left( -1 \right)=0\). Hàm số \({f}'\left( x \right)\) có đồ thị như hình vẽ:
Hàm số \(g(x)=\left| 2f\left( x-1 \right)-{{x}^{2}} \right|\) đồng biến trên khoảng nào?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+ Ta xét hàm số \(h(x)=2f\left( x-1 \right)-{{x}^{2}}\), có \({h}'(x)=2{f}'\left( x-1 \right)-2x=2\left[ {f}'\left( x-1 \right)-\left( x-1+1 \right) \right]\)
+ Đặt u=x-1 thì có \({h}'(x)=2\left[ {f}'\left( u \right)-\left( u+1 \right) \right]\)
+ Quan sát đồ thị hàm số \(y={f}'\left( u \right)\) và y=u+1
Ta suy ra bảng xét dấu
+ Giải các phương trình \(\left[ \begin{array}{l} x - 1 = - 1\\ x - 1 = 0\\ x - 1 = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = 3 \end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên dễ thấy hàm số \(h(x)=2f\left( x-1 \right)-{{x}^{2}}\) và \(g(x)=\left| 2f\left( x-1 \right)-{{x}^{2}} \right|\) cùng đồng biến trên \(\left( 0;3 \right)\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Trãi lần 2