Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2},\,\,\,\,khi\,\,x > 2\\nx - {m^2} - 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x \le 2\end{array} \right.\) Tìm \(m,\,\,n\) để hàm số có giới hạn tại \(x = 2.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiới hạn phải \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2}} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {m\frac{{x + 2}}{{x - 1}} + {n^2}} \right) = 4m + {n^2}\)
Giới hạn bên phải \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {nx - {m^2} - 5} \right) = 2n - {m^2} - 5\)
Để hàm số có giới hạn tại \(x = 2\) thì:
\(\begin{array}{l}2n - {m^2} - 5 = 4m + {n^2} \Leftrightarrow \left( {{m^2} + 4m + 4} \right) + \left( {{n^2} - 2n + 1} \right) = 0 \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {n - 1} \right)^2} = 0\\ \Rightarrow m = - 2;\,n = 1\end{array}\)