Cho hàm số bậc ba y=f(x)=mx3+nx2+13x+qy=f(x)=mx3+nx2+13x+q có đồ thị (C)(C) và cắt đường thẳng d:y=g(x)d:y=g(x) như hình vẽ. Biết AB=5AB=5, tổng tất cả các nghiệm của phương trình f(x)−g(x)−3x2=2f(x)−g(x)−3x2=2 là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐường thẳng dd qua gốc toạ độ và có hướng đi lên nên có dạng d:y=kx(k>0)d:y=kx(k>0), khi đó A(−1;−k),B(2;2k)A(−1;−k),B(2;2k). Ta có AB=5⇔9+9k2=25⇒k=43AB=5⇔9+9k2=25⇒k=43. Vậy d:y=43xd:y=43x.
Phương trình hoành độ giao điểm của (C)(C) và dd là f(x)−g(x)=0⇔mx3+nx2−x+q=0f(x)−g(x)=0⇔mx3+nx2−x+q=0.
Phương trình này có các nghiệm x∈{−1;1;2}x∈{−1;1;2} nên mx3+nx2−x+q=m(x+1)(x−1)(x−2)mx3+nx2−x+q=m(x+1)(x−1)(x−2). Hay mx3+nx2−x+q=mx3−2mx2−mx+2mmx3+nx2−x+q=mx3−2mx2−mx+2m, từ đây suy ra
{m=1n=−2q=2.
Vậy y=f(x)=x3−2x2+13x+2. Khi đó ta có
f(x)−g(x)−3x2=2⇔x3−2x2−x+2−3x2−2=0⇔x3−5x2−x=0⇔x(x2−5x−1)=0.
Phương trình cuối có 3 nghiệm phân biệt, trong đó có 1 nghiệm x=0 và tổng 2 nghiệm còn lại là 5 nên có tổng 3 nghiệm là 5.
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Trường THPT Nguyễn Kiệm