Cho hai số thực dương x, y thỏa mãn \({\log _3}x + xy = {\log _3}\left( {8 - y} \right) + x\left( {8 - x} \right)\). Giá trị nhỏ nhất của biểu thức \(P = {x^3} - \left( {{x^2} + {y^2}} \right) - 16x\) bằng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện \(\left\{ \begin{array}{l} x > 0\\ 0 < y < 8 \end{array} \right.\).
Từ giả thiết biến đổi có:
\({\log _3}x + xy = {\log _3}\left( {8 - y} \right) + x\left( {8 - x} \right) \Leftrightarrow {\log _3}{x^2} + {x^2} = {\log _3}\left[ {x\left( {8 - y} \right)} \right] + x\left( {8 - y} \right)\)
Do hàm số \(f\left( t \right) = {\log _3}t + t\) đồng biến trên \(\left( {0; + \infty } \right)\) đồng thời từ giả thiết bài toán có:
\(\left\{ \begin{array}{l} {x^2} \in \left( {0; + \infty } \right)\\ x\left( {8 - y} \right) \in \left( {0; + \infty } \right)\\ f\left( {{x^2}} \right) = f\left[ {x\left( {8 - y} \right)} \right] \end{array} \right. \Rightarrow {x^2} = x\left( {8 - y} \right) \Leftrightarrow x + y = 8\)
Do x, y > 0 nên có \(x \in \left( {0;8} \right)\)
Thay vào P ta có: \(P = {x^3} - {x^2} - {\left( {8 - x} \right)^2} - 16x = {x^3} - 2{x^2} - 64\)
Xét hàm số \(g\left( x \right) = {x^3} - 2{x^2} - 64;x \in \left( {0;8} \right)\) ta có \(\mathop {\min g\left( x \right)}\limits_{\left( {0;8} \right)} = - \frac{{1760}}{{27}}\)