Cho hai số phức \(z_1,z_2\) thay đổi, luôn thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGymaiabgkHiTiaa % ikdacaWGPbaacaGLhWUaayjcSdGaeyypa0JaaGymaaaa!4105! \left| {{z_1} - 1 - 2i} \right| = 1\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaGynaiabgUcaRiaa % dMgaaiaawEa7caGLiWoacqGH9aqpcaaIYaaaaa!4044! \left| {{z_2} - 5 + i} \right| = 2\). Tìm giá trị nhỏ nhất \(P_{min}\) của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maaemaabaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaa % dQhadaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoaaaa!3FBE! P = \left| {{z_1} - {z_2}} \right|\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm % aabaGaamOEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiab % gkDiElaad2eaaaa!3D6D! M\left( {{z_1}} \right) \Rightarrow M\) thuộc đường tròn \((C_1)\) tâm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa % aaleaacaaIXaaabeaakmaabmaabaGaaGymaiaacUdacaaIYaaacaGL % OaGaayzkaaGaaiilaiaadkfadaWgaaWcbaGaaGymaaqabaGccqGH9a % qpcaaIXaaaaa!3FAA! {I_1}\left( {1;2} \right),{R_1} = 1\)
Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaabm % aabaGaamOEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiab % gkDiElaad6eaaaa!3D70! N\left( {{z_2}} \right) \Rightarrow N\) thuộc đường tròn \((C_2)\) tâm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa % aaleaacaaIYaaabeaakmaabmaabaGaaGynaiaacUdacqGHsislcaaI % XaaacaGLOaGaayzkaaGaaiilaiaadkfadaWgaaWcbaGaaGOmaaqaba % GccqGH9aqpcaaIYaaaaa!409D! {I_2}\left( {5; - 1} \right),{R_2} = 2\).
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGjbWaaSbaaSqaaiaaigdaaeqaaOGaamysamaaBaaaleaacaaIYaaa % beaaaOGaay51GaGaeyypa0ZaaeWaaeaacaaI0aGaai4oaiabgkHiTi % aaiodaaiaawIcacaGLPaaacqGHshI3caWGjbWaaSbaaSqaaiaaigda % aeqaaOGaamysamaaBaaaleaacaaIYaaabeaakiabg2da9iaaiwdacq % GH+aGpcaWGsbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOuamaa % BaaaleaacaaIYaaabeaaaaa!4DEE! \overrightarrow {{I_1}{I_2}} = \left( {4; - 3} \right) \Rightarrow {I_1}{I_2} = 5 > {R_1} + {R_2}\) nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGdbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaiilamaa % bmaabaGaam4qamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa % aa!3D28! \left( {{C_1}} \right),\left( {{C_2}} \right)\) không cắt nhau.
Do đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa % aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0Jaamytaiaad6ea % daWgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabg2da9iaadMeada % WgaaWcbaGaaGymaaqabaGccaWGjbWaaSbaaSqaaiaaikdaaeqaaOGa % eyOeI0IaamOuamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadkfada % WgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIYaaaaa!4B35! {P_{\min }} = M{N_{\min }} = {I_1}{I_2} - {R_1} - {R_2} = 2\).
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 5