Cho \(f\left( x \right)\) là hàm số bậc bốn thỏa mãn \(f\left( 0 \right)=0.\) Hàm số \(f'\left( x \right)\) có bảng biến thiên như sau:
Hàm số \(g\left( x \right)=\left| f\left( {{x}^{3}} \right)-3x \right|\) có bao nhiêu điểm cực trị?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(h\left( x \right)=f\left( {{x}^{3}} \right)-3x\) ta có \(h'\left( x \right)=3{{x}^{2}}f'\left( {{x}^{3}} \right)-3.\)
Cho \(h'\left( x \right)=0\Leftrightarrow 3{{x}^{2}}f'\left( {{x}^{3}} \right)-3=0\Leftrightarrow {{x}^{2}}f'\left( {{x}^{3}} \right)-1=0\Leftrightarrow f'\left( {{x}^{3}} \right)=\frac{1}{{{x}^{2}}}.\)
Đặt \(t={{x}^{3}}\Rightarrow x=\sqrt[3]{t}\Rightarrow {{x}^{2}}={{\left( \sqrt[3]{t} \right)}^{2}}\) ta có \(f'\left( t \right)=\frac{1}{{{\left( \sqrt[3]{t} \right)}^{2}}}\left( * \right).\)
Xét hàm số \(k\left( t \right)=\frac{1}{{{\left( \sqrt[3]{t} \right)}^{2}}}\) ta có \(k\left( t \right)={{t}^{-\text{ }\frac{2}{3}}}\Rightarrow k'\left( t \right)=-\frac{2}{3}.{{t}^{-\text{ }\frac{5}{3}}}=-\frac{2}{3}.\frac{1}{\sqrt[3]{{{t}^{5}}}}.\)
BBT
Khi đó ta có đồ thị hàm số:
Dựa vào đồ thị ta thấy \(\left( * \right)\Leftrightarrow t=a>0\Leftrightarrow {{x}^{3}}=a\Leftrightarrow x=\sqrt[3]{a}.\)
⇒ Hàm số \(h\left( x \right)=f\left( {{x}^{3}} \right)-3x\) có 1 điểm cực trị.
BBT
Dựa vào BBT ta thấy \(h\left( \sqrt[3]{a} \right)<h\left( 0 \right)=f\left( 0 \right)=0.\) Do đó phương trình \(h\left( x \right)=0\) có 2 nghiệm phân biệt.
Vậy hàm số \(g\left( x \right)=\left| h\left( x \right) \right|\) có tất cả 3 điểm cực trị.