Cho các số thực x, y thỏa mãn \(5+{{16.4}^{{{x}^{2}}-2y}}=(5+{{16}^{{{x}^{2}}-2y}}){{.7}^{2y-{{x}^{2}}+2}}\). Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của biểu thức \(P=\frac{10x+6y+26}{2\text{x}+2y+5}\). Khi đó T=M+m bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\({{x}^{2}}-2y=t\Rightarrow 5+{{16.4}^{t}}=(5+{{16}^{t}}){{.7}^{2-t}}\Rightarrow \frac{5+{{4}^{t+2}}}{{{7}^{t+2}}}=\frac{5+{{4}^{2t}}}{{{7}^{2t}}}\)
\(\Rightarrow t+2=2t\Rightarrow t=2\Rightarrow {{x}^{2}}-2y=2\Rightarrow 2y={{x}^{2}}-2\)
Khi đó \(P=\frac{3{{\text{x}}^{2}}+10\text{x}+20}{{{x}^{2}}+2\text{x}+3}\Rightarrow (3-P){{x}^{2}}+2(5-P)x+20-3P=0\).
Phương trình bậc hai ẩn x, x tồn tại khi \(\Delta \ge 0\Rightarrow 2{{P}^{2}}-19P+35\le 0\Rightarrow \frac{5}{2}\le P\le 7\).
Vậy \(M+m=9,5\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thành Nhân lần 2