Đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}+2\) cắt đường thẳng \(d:y=m\) tại 4 điểm phân biệt và tạo ra các hình phẳng có diện tích \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) thỏa mãn \({{S}_{1}}+{{S}_{2}}={{S}_{3}}\) (như hình vẽ). Giá trị m thuộc khoảng nào sau đây?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}+2\) cắt đường thẳng \(y=m\) tại 4 điểm có hoành độ \(-b,\ -a,\ a,\ b\) thì \({{b}^{4}}-4{{b}^{2}}+2=m\).
Để
\(\begin{align} & {{S}_{1}}+{{S}_{2}}={{S}_{3}}\Leftrightarrow \int\limits_{0}^{b}{\left( {{x}^{4}}-4{{x}^{2}}+2-m \right)}=0\Leftrightarrow \frac{{{b}^{5}}}{5}-4\frac{{{b}^{3}}}{3}+2b-mb=0 \\ & \Rightarrow \frac{{{b}^{4}}}{5}-4\frac{{{b}^{2}}}{3}+2=m\Leftrightarrow \frac{{{b}^{4}}}{5}-\frac{4{{b}^{2}}}{3}+2={{b}^{4}}-4{{b}^{2}}+2\Leftrightarrow \frac{4}{5}{{b}^{4}}=\frac{8}{3}{{b}^{2}}\Rightarrow {{b}^{2}}=\frac{10}{3} \\ \end{align}\)
Khi đó \(m={{b}^{4}}-4{{b}^{2}}+2=\frac{-2}{9}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thành Nhân lần 2