Cho hàm số \(f\left( x \right)\) có bảng biến thiên như hình vẽ:
Số điểm cực trị của hàm số \(g\left( x \right)={{\left[ f\left( {{x}^{2}} \right) \right]}^{2}}-3f\left( {{x}^{2}} \right)+1\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(g'\left( x \right)=2f\left( {{x}^{2}} \right).2x.f'\left( {{x}^{2}} \right)-6xf'\left( {{x}^{2}} \right)=4xf'\left( {{x}^{2}} \right).\left[ f\left( {{x}^{2}} \right)-\frac{3}{2} \right]\).
Phương trình \(f'\left( {{x}^{2}} \right)=0\Leftrightarrow \left[ \begin{align} & {{x}^{2}}=1 \\ & {{x}^{2}}=3 \\ \end{align} \right.\to \) có 4 nghiệm.
Phương trình \(f\left( x \right)=\frac{3}{2}\) có nghiệm x âm nên phương trình \(f\left( {{x}^{2}} \right)=\frac{3}{2}\) vô nghiệm.
Do đó phương trình \(g'\left( x \right)=0\) có 5 nghiệm.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thành Nhân lần 2