Cho hàm số \(f\left( a \right)=\frac{{{a}^{\frac{2}{3}}}\left( \sqrt[3]{{{a}^{-2}}}-\sqrt[3]{a} \right)}{{{a}^{\frac{1}{8}}}\left( \sqrt[8]{{{a}^{3}}}-\sqrt[8]{{{a}^{-1}}} \right)}\) với \(a>0,\,\,a\ne 1\). Giá trị của \(M=f\left( {{2019}^{2018}} \right)\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(f\left( a \right)=\frac{{{a}^{\frac{2}{3}}}\left( \sqrt[3]{{{a}^{-2}}}-\sqrt[3]{a} \right)}{{{a}^{\frac{1}{8}}}\left( \sqrt[8]{{{a}^{3}}}-\sqrt[8]{{{a}^{-1}}} \right)}=\frac{{{a}^{\frac{2}{3}}}\left( {{a}^{\frac{-2}{3}}}-{{a}^{\frac{1}{3}}} \right)}{{{a}^{\frac{1}{8}}}\left( {{a}^{\frac{3}{8}}}-{{a}^{\frac{1}{8}}} \right)}=\frac{1-a}{{{a}^{\frac{1}{2}}}-1}=\frac{-\left( {{a}^{\frac{1}{2}}}-1 \right)\left( {{a}^{\frac{1}{2}}}+1 \right)}{{{a}^{\frac{1}{2}}}-1}=-{{a}^{\frac{1}{2}}}-1\)
Khi đó \(M=f\left( {{2019}^{2018}} \right)=-{{\left( {{2019}^{2018}} \right)}^{\frac{1}{2}}}-1=-{{2019}^{1009-1}}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thành Nhân lần 2