ADMICRO
Biết \(\int\limits_2^4 {\dfrac{1}{{2x + 1}}\,dx = m\ln 5 + n\ln 3\,\left( {m,n \in R} \right)} \). Tính P = m – n .
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 6
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có:
\(\int\limits_2^4 \dfrac{1}{{2x + 1}}\,dx \)
\(= \dfrac{1}{2}\int\limits_2^4 \dfrac{1}{{2x + 1}}\,d\left( {2x + 1} \right) \)
\(= \dfrac{1}{2}\ln \left| {2x + 1} \right|\left| \begin{array}{l}{}^4\\_2\end{array} \right. \)
\(= \ln 3 - \dfrac{1}{2}\ln 5 = m\ln 5 + n\ln 3\, \)
Khi đó ta có: \(\left\{ \begin{array}{l}n = 1\\m = - \dfrac{1}{2}\end{array} \right. \Rightarrow P = m - n = - \dfrac{3}{2}.\)
Chọn đáp án A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK