Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\) là mặt phẳng qua \(G\left( {1;2;3} \right)\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) (khác gốc \(O\)) sao cho \(G\) là trọng tâm của tam giác \(ABC\). Khi đó mặt phẳng \(\left( \alpha \right)\) có phương trình:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình mặt phẳng \(\left( \alpha \right)\) :\(\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\) \(\left( {a,b,c \ne 0} \right)\) .
Ta có \(G\) là trọng tâm tam giác \(ABC\)
\( \Rightarrow \left\{ \begin{array}{l}\dfrac{a}{3} = 1\\\dfrac{b}{3} = 2\\\dfrac{c}{3} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 6\\c = 9\end{array} \right.\)
\( \Rightarrow \left( \alpha \right):\dfrac{x}{3} + \dfrac{y}{6} + \dfrac{z}{9} = 1 \Leftrightarrow 6x + 3y + 2z - 18 = 0\)
Đề thi giữa HK2 môn Toán 12 năm 2021
Trường THPT Phan Ngọc Hiển