ADMICRO
Cho \({z_1};\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức \({\rm{w}} = 2z_1^2 - z_2^2\).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có \({z^2} - 2z + 5 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}z = 1 + 2i\\z = 1 - 2i\end{array} \right.\)
Mà \({z_1} - {z_2}\) có phần ảo là số thực âm nên \(\left\{ \begin{array}{l}{z_1} = 1 - 2i\\{z_2} = 1 + 2i\end{array} \right..\)
\( \Rightarrow {\rm{w}} = 2z_1^2 - z_2^2 = - 3 - 12i\).
Vậy phần ảo của số phức w là \( - 12.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK