ADMICRO
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_0^{2019} {f\left( x \right)dx} = 1\). Hãy tính tích phân \(I = \int\limits_0^1 {f\left( {2019x} \right)dx} .\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 8
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiĐặt \(t = 2019x \Rightarrow dt = 2019dx.\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 2019\end{array} \right.\).
Khi đó ta có: \(I = \int\limits_0^1 {f\left( {2019x} \right)dx} = \int\limits_0^{2019} {f\left( t \right)\frac{{dt}}{{2019}}} \)\( = \frac{1}{{2019}}.\int\limits_0^{2019} {f\left( t \right)dt} \)\( = \frac{1}{{2019}}.\int\limits_0^{2019} {f\left( x \right)dx} = \frac{1}{{2019}}.\)
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK