Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa % aiaaikdacaaI3aaaaiaabwgadaahaaWcbeqaaiaaiodacaWG4bGaey % 4kaSIaaGymaaaakmaabmaabaGaaGyoaiaadIhadaahaaWcbeqaaiaa % ikdaaaGccqGHsislcaaIYaGaaGinaiaadIhacqGHRaWkcaaIXaGaaG % 4naaGaayjkaiaawMcaaiabgUcaRiaadoeaaaa!4CB1! F\left( x \right) = \frac{1}{{27}}{{\rm{e}}^{3x + 1}}\left( {9{x^2} - 24x + 17} \right) + C\) là nguyên hàm của hàm số nào dưới đây.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaadaWc % aaqaaiaaigdaaeaacaaIYaGaaG4naaaacaqGLbWaaWbaaSqabeaaca % aIZaGaamiEaiabgUcaRiaaigdaaaGcdaqadaqaaiaaiMdacaWG4bWa % aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaaisdacaWG4bGaey % 4kaSIaaGymaiaaiEdaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaah % aaWcbeqaaOGamai4gkdiIcaacqGH9aqpdaWcaaqaaiaaigdaaeaaca % aIYaGaaG4naaaadaWadaqaaiaaiodacaGGUaGaaeyzamaaCaaaleqa % baGaaG4maiaadIhacqGHRaWkcaaIXaaaaOWaaeWaaeaacaaI5aGaam % iEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaaI0aGaamiE % aiabgUcaRiaaigdacaaI3aaacaGLOaGaayzkaaGaey4kaSIaaeyzam % aaCaaaleqabaGaaG4maiaadIhacqGHRaWkcaaIXaaaaOWaaeWaaeaa % caaI5aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdaca % aI0aGaamiEaiabgUcaRiaaigdacaaI3aaacaGLOaGaayzkaaWaaWba % aSqabeaakiadacUHYaIOaaaacaGLBbGaayzxaaaaaa!7753! F'\left( x \right) = {\left( {\frac{1}{{27}}{{\rm{e}}^{3x + 1}}\left( {9{x^2} - 24x + 17} \right)} \right)^\prime } = \frac{1}{{27}}\left[ {3.{{\rm{e}}^{3x + 1}}\left( {9{x^2} - 24x + 17} \right) + {{\rm{e}}^{3x + 1}}{{\left( {9{x^2} - 24x + 17} \right)}^\prime }} \right]\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOmaiaaiEdaaaWaamWaaeaacaaIZaGaaiOl % aiaabwgadaahaaWcbeqaaiaaiodacaWG4bGaey4kaSIaaGymaaaakm % aabmaabaGaaGyoaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsisl % caaIYaGaaGinaiaadIhacqGHRaWkcaaIXaGaaG4naaGaayjkaiaawM % caaiabgUcaRiaabwgadaahaaWcbeqaaiaaiodacaWG4bGaey4kaSIa % aGymaaaakmaabmaabaGaaGymaiaaiIdacaWG4bGaeyOeI0IaaGOmai % aaisdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpdaWcaaqa % aiaaigdaaeaacaaIYaGaaG4naaaacaqGLbWaaWbaaSqabeaacaaIZa % GaamiEaiabgUcaRiaaigdaaaGcdaqadaqaaiaaikdacaaI3aGaamiE % amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaaI0aGaamiEai % abgUcaRiaaikdacaaI3aaacaGLOaGaayzkaaGaeyypa0Jaaeyzamaa % CaaaleqabaGaaG4maiaadIhacqGHRaWkcaaIXaaaaOWaaeWaaeaaca % WG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGH % RaWkcaaIXaaacaGLOaGaayzkaaaaaa!7691! = \frac{1}{{27}}\left[ {3.{{\rm{e}}^{3x + 1}}\left( {9{x^2} - 24x + 17} \right) + {{\rm{e}}^{3x + 1}}\left( {18x - 24} \right)} \right] = \frac{1}{{27}}{{\rm{e}}^{3x + 1}}\left( {27{x^2} - 54x + 27} \right) = {{\rm{e}}^{3x + 1}}\left( {{x^2} - 2x + 1} \right)\)