ADMICRO
\(\text { Cho tích phân } I=\int_{1}^{\mathrm{e}} \frac{3 \ln x-1}{x} \mathrm{~d} x \text { . Nếu đặt } t=\ln x \text { thì }\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\(\begin{array}{l} \text { Đặt } t=\ln x, \text { ta có } \mathrm{d} t=\frac{\mathrm{d} x}{x} \text { . }\\ \text { Khi } x=1 \text { thì } t=0 . \text { Khi } x=e \text { thì } t=1 \text { . Vậy } I=\int_{0}^{1}(3 t-1) \mathrm{d} t \text { . } \end{array}\)
ZUNIA9
AANETWORK