Trong mặt phẳng Oxy cho đường thẳng d có phương trình: x + y - 2 = 0. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vectơ \(\vec v = \left( {3;2} \right)\) biến đường thẳng d thành đường thẳng nào trong các đường thẳng sau ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \({d_1} =Đ_O\) (d)
Gọi \({M_1}({x_1};{y_1})\) là ảnh của \(M(x;y) \in d\) qua ĐO\( \Rightarrow {M_1} \in {d_1}\)
Ta có \(\left\{ \begin{array}{l}{x_1} = - x\\{y_1} = - y\end{array} \right.\)
Gọi \({d_2} = {T_{\overrightarrow v }}({d_1})\)
Gọi \({M_2}({x_2};{y_2})\) là ảnh của \({M_1} \in {d_1}\) qua \({T_{\overrightarrow v }}\Rightarrow {M_2} \in {d_2}\)
Ta có
\(\left\{ \begin{array}{l}{x_2} = {x_1} + 3\\{y_2} = {y_1} + 2\end{array} \right.
\\ \Leftrightarrow \left\{ \begin{array}{l}{x_2} = - x + 3\\{y_2} = - y + 2\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 3 - {x_2}\\y = 2 - {y_2}\end{array} \right.\)
Mà \(M(x;y) \in d\)
Do đó \(3 - {x_2} + 2 - {y_2} - 2 = 0 \Leftrightarrow {x_2} + {y_2} - 3 = 0\)
Mặt khác \({M_2} \in {d_2}\)
Vậy \({d_2}:x + y - 3 = 0\)