Tìm x, biết: \(\sqrt {9{x^2}} = 2x + 1\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\eqalign{
& \sqrt {9{x^2}} = 2x + 1 \cr
& \Leftrightarrow \sqrt {{{\left( {3x} \right)}^2}} = 2x + 1 \cr
& \Leftrightarrow \left| {3x} \right| = 2x + 1 \,\,(1)\cr} \)
Trường hợp 1:
\(3x \ge 0 \Leftrightarrow x \ge 0 \Rightarrow \left| {3x} \right| = 3x\)
Suy ra:
\(3x = 2x + 1 \Leftrightarrow 3x - 2x = 1 \Leftrightarrow x = 1\)
Giá trị \(x = 1\) thỏa mãn điều kiện \(x ≥ 0\).
Vậy \(x = 1\) là nghiệm của phương trình (1).
Trường hợp 2:
\(3x < 0 \Leftrightarrow x < 0 \Rightarrow \left| {3x} \right| = - 3x\)
Suy ra :
\(\eqalign{
& - 3x = 2x + 1 \Leftrightarrow - 3x - 2x = 1 \cr
& \Leftrightarrow - 5x = 1 \Leftrightarrow x = - {1 \over 5} \cr} \)
Giá trị \(\displaystyle x = - {1 \over 5}\) thỏa mãn điều kiện \(x < 0.\)
Vậy \(\displaystyle x = - {1 \over 5}\) là nghiệm của phương trình (1).
Vậy \(x = 1\) và \(\displaystyle x = - {1 \over 5}\)
Đề thi thử vào lớp 10 năm 2021 môn Toán
Trường THCS Bình Long