Rút gọn biểu thức \(\sqrt {\dfrac{{x - 2\sqrt x + 1}}{{x + 2\sqrt x + 1}}} \) (\(x ≥ 0\))
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì \(x ≥ 0\) nên \( x = {\left( {\sqrt x } \right)^2}\)
Ta có:
\( \displaystyle\eqalign{
& \sqrt {{{x - 2\sqrt x + 1} \over {x + 2\sqrt x + 1}}} \cr
& = \sqrt {{{{{\left( {\sqrt x } \right)}^2} - 2\sqrt x + 1} \over {{{\left( {\sqrt x } \right)}^2} + 2\sqrt x + 1}}} \cr
& = \sqrt {{{{{\left( {\sqrt x - 1} \right)}^2}} \over {{{\left( {\sqrt x + 1} \right)}^2}}}} \cr} \)
\( \displaystyle \displaystyle= {{\sqrt {{{\left( {\sqrt x - 1} \right)}^2}} } \over {\sqrt {{{\left( {\sqrt x + 1} \right)}^2}} }}\)
\( = \dfrac{{\left| {\sqrt x - 1} \right|}}{{\left| {\sqrt x + 1} \right|}} = \dfrac{{\left| {\sqrt x - 1} \right|}}{{\sqrt x + 1}}\)
+) Nếu \( \displaystyle\sqrt x - 1 \ge 0 \Leftrightarrow x \ge 1\) thì \( \displaystyle\left| {\sqrt x - 1} \right| = \sqrt x - 1\)
Ta có: \( \displaystyle{{\left| {\sqrt x - 1} \right|} \over {\sqrt x + 1}} = {{\sqrt x - 1} \over {\sqrt x + 1}}\) (với \(x ≥ 1)\)
+) Nếu \( \displaystyle\sqrt x - 1 < 0 \Leftrightarrow x < 1\) thì \( \displaystyle\left| {\sqrt x - 1} \right| = 1 - \sqrt x \)
Ta có:
\( \displaystyle{{\left| {\sqrt x - 1} \right|} \over {\sqrt x + 1}} = {{1 - \sqrt x } \over {\sqrt x + 1}}\) (với \(0 ≤ x < 1\))
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường
THCS Nguyễn Đình Chiểu