Phương trình \(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\) có nghiệm là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)
\(\begin{array}{l} \Leftrightarrow 2\sqrt 3 {x^2} + x + 1 - \sqrt 3 \left( {x + 1} \right) = 0\\ \Leftrightarrow 2\sqrt 3 {x^2} + x + 1 - \sqrt 3 x - \sqrt 3 = 0\\ \Leftrightarrow 2\sqrt 3 {x^2} + \left( {1 - \sqrt 3 } \right)x + 1 - \sqrt 3 = 0\end{array}\)
\(\Delta = {\left( {1 - \sqrt 3 } \right)^2} - 4.2\sqrt 3 \left( {1 - \sqrt 3 } \right) \)\(= 4 - 2\sqrt 3 - 8\sqrt 3 + 24\)\( = 28 - 10\sqrt 3 \)\( = 25 - 2.5.\sqrt 3 + 3 \)\(= {\left( {5 - \sqrt 3 } \right)^2}\)\( \Rightarrow \sqrt \Delta = 5 - \sqrt 3 \)
\({x_1} = \dfrac{{\sqrt 3 - 1 + 5 - \sqrt 3 }}{{4\sqrt 3 }} \)\(= \dfrac{{\sqrt 3 }}{3};\)\({x_2} = \dfrac{{\sqrt 3 - 1 - 5 + \sqrt 3 }}{{4\sqrt 3 }} \)\(= \dfrac{{1 - \sqrt 3 }}{2}\)
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường
THCS Nguyễn Đình Chiểu