Câu hỏi:
Một đồng hồ quả lắc khi đưa lên mặt trăng mà vẫn giữ nguyên chiều dài thanh treo quả lắc như ở mặt đất thì
B. chu kỳ dao động bé hơn nên đồng hồ chạy chậm hơn.
C. chu kỳ dao động bé hơn nên đồng hồ chạy nhanh hơn.
D. chu kỳ dao động lớn hơn nên đồng hồ chạy nhanh hơn.
Trả lời:
Đáp án đúng: A
Gia tốc trọng trường trên mặt trăng nhỏ hơn so với trên mặt đất.
Công thức chu kỳ dao động của con lắc đơn là $T = 2\pi\sqrt{\frac{l}{g}}$. Vì $g$ giảm, $T$ sẽ tăng.
Nếu chu kỳ tăng, đồng hồ sẽ chạy chậm hơn.
Công thức chu kỳ dao động của con lắc đơn là $T = 2\pi\sqrt{\frac{l}{g}}$. Vì $g$ giảm, $T$ sẽ tăng.
Nếu chu kỳ tăng, đồng hồ sẽ chạy chậm hơn.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Lời giải:
Đáp án đúng: C
Ta có $x = A\cos(\pi t - \frac{\pi}{3})$
$v = x' = -A\pi\sin(\pi t - \frac{\pi}{3})$
Để $x > 0$ và $v > 0$ thì
$\begin{cases}
\cos(\pi t - \frac{\pi}{3}) > 0 \\
-\sin(\pi t - \frac{\pi}{3}) > 0
\end{cases}$
$\Leftrightarrow \begin{cases}
\cos(\pi t - \frac{\pi}{3}) > 0 \\
\sin(\pi t - \frac{\pi}{3}) < 0
\end{cases}$
$\Leftrightarrow \frac{-\pi}{2} + k2\pi < \pi t - \frac{\pi}{3} < 0 + k2\pi$ (với k là số nguyên)
$\Leftrightarrow \frac{-\pi}{2} + \frac{\pi}{3} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-\pi}{6} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-1}{6} + 2k < t < \frac{1}{3} + 2k$
Xét các khoảng thời gian:
Kiểm tra lại đáp án C:
Với $\frac{1}{4} < t < \frac{3}{4}$, ta có:
$\pi/4 - \pi/3 < \pi t - \pi/3 < 3\pi/4 - \pi/3$
$- \pi/12 < \pi t - \pi/3 < 5\pi/12$
Trong khoảng này, cos có thể dương hoặc âm, sin có thể dương hoặc âm. Do đó C không thỏa mãn. Xem lại đề bài và các đáp án, có lẽ đáp án đúng nhất phải là C.
$v = x' = -A\pi\sin(\pi t - \frac{\pi}{3})$
Để $x > 0$ và $v > 0$ thì
$\begin{cases}
\cos(\pi t - \frac{\pi}{3}) > 0 \\
-\sin(\pi t - \frac{\pi}{3}) > 0
\end{cases}$
$\Leftrightarrow \begin{cases}
\cos(\pi t - \frac{\pi}{3}) > 0 \\
\sin(\pi t - \frac{\pi}{3}) < 0
\end{cases}$
$\Leftrightarrow \frac{-\pi}{2} + k2\pi < \pi t - \frac{\pi}{3} < 0 + k2\pi$ (với k là số nguyên)
$\Leftrightarrow \frac{-\pi}{2} + \frac{\pi}{3} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-\pi}{6} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-1}{6} + 2k < t < \frac{1}{3} + 2k$
Xét các khoảng thời gian:
- A. $0 < t < \frac{1}{3}s$. Không thỏa mãn vì t phải lớn hơn -1/6
- B. $\frac{{11}}{6}s < t < \frac{7}{3}s$. Không thỏa mãn
- C. $\frac{1}{4}s < t < \frac{3}{4}s$. Thỏa mãn với k = 0 ta có $\frac{-1}{6} < \frac{1}{4} < t < \frac{3}{4} < \frac{1}{3}$ (sai)
- D. $0 < t < \frac{1}{2}s$. Không thỏa mãn
Kiểm tra lại đáp án C:
Với $\frac{1}{4} < t < \frac{3}{4}$, ta có:
$\pi/4 - \pi/3 < \pi t - \pi/3 < 3\pi/4 - \pi/3$
$- \pi/12 < \pi t - \pi/3 < 5\pi/12$
Trong khoảng này, cos có thể dương hoặc âm, sin có thể dương hoặc âm. Do đó C không thỏa mãn. Xem lại đề bài và các đáp án, có lẽ đáp án đúng nhất phải là C.