JavaScript is required
Danh sách đề

90 câu trắc nghiệm cuối HK1 Vật lí 11 - CTST - Đề 1

28 câu hỏi 60 phút

Thẻ ghi nhớ
Luyện tập
Thi thử
Nhấn để lật thẻ
1 / 28

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ lựa chọn một phương án.

Trong dao động điều hòa của một vật thì gia tốc và li độ biến thiên theo thời gian:

A.

Ngược pha với nhau

B.

Cùng pha với nhau

C.

Vuông pha với nhau

D.
Lệch pha một góc \[\frac{\pi }{4}\]
Đáp án
Đáp án đúng: B
Trong dao động điều hòa, gia tốc $a$ và li độ $x$ liên hệ với nhau qua công thức: $a = -\omega^2 x$, trong đó $\omega$ là tần số góc. Dấu âm chỉ ra rằng gia tốc và li độ luôn ngược pha nhau.
Vậy đáp án đúng là ngược pha.

Danh sách câu hỏi:

Lời giải:
Đáp án đúng: A
Trong dao động điều hòa, gia tốc $a$ và li độ $x$ liên hệ với nhau qua công thức: $a = -\omega^2 x$, trong đó $\omega$ là tần số góc. Dấu âm chỉ ra rằng gia tốc và li độ luôn ngược pha nhau.
Vậy đáp án đúng là ngược pha.

Câu 2:

Một vật dao động điều hòa có gia tốc a, vận tốc v, tần số góc \[\omega \].

Đặt \[\alpha = \frac{1}{{{\omega ^2}}},\beta = \frac{{{v^2}}}{{{A^2}}},\gamma = \frac{{{a^2}}}{{{\omega ^2}{A^2}}}\] thì có biểu thức:

Lời giải:
Đáp án đúng: A
Ta có:
  • $x = A\cos(\omega t + \varphi)$
  • $v = -\omega A\sin(\omega t + \varphi)$
  • $a = -\omega^2 A\cos(\omega t + \varphi) = -\omega^2 x$

Suy ra:
$\beta = \frac{v^2}{A^2} = \frac{\omega^2 A^2 \sin^2(\omega t + \varphi)}{A^2} = \omega^2 \sin^2(\omega t + \varphi)$

$\gamma = \frac{a^2}{\omega^2 A^2} = \frac{\omega^4 x^2}{\omega^2 A^2} = \frac{\omega^2 A^2 \cos^2(\omega t + \varphi)}{A^2} = \omega^2 \cos^2(\omega t + \varphi)$

$\alpha = \frac{1}{\omega^2}$

$\Rightarrow \beta + \gamma = \omega^2(\sin^2(\omega t + \varphi) + \cos^2(\omega t + \varphi)) = \omega^2$

$\Rightarrow \alpha(\beta + \gamma) = \frac{1}{\omega^2} \cdot \omega^2 = 1$.

Câu 3:

Cơ năng của một vật dao động điều hòa tỉ lệ thuận với

Lời giải:
Đáp án đúng: C
Cơ năng của vật dao động điều hòa được tính bằng công thức: $W = \frac{1}{2} m \omega^2 A^2 = \frac{1}{2} m (2\pi f)^2 A^2 = 2\pi^2 m f^2 A^2$.
Vậy cơ năng của vật dao động điều hòa tỉ lệ thuận với bình phương tần số dao động.

Câu 4:

Một đồng hồ quả lắc khi đưa lên mặt trăng mà vẫn giữ nguyên chiều dài thanh treo quả lắc như ở mặt đất thì
Lời giải:
Đáp án đúng: A
Gia tốc trọng trường trên mặt trăng nhỏ hơn so với trên mặt đất.

Công thức chu kỳ dao động của con lắc đơn là $T = 2\pi\sqrt{\frac{l}{g}}$. Vì $g$ giảm, $T$ sẽ tăng.

Nếu chu kỳ tăng, đồng hồ sẽ chạy chậm hơn.

Câu 5:

Một vật dao động điều hòa có phương trình: \[x = A\cos \left( {\pi t - \frac{\pi }{3}} \right)\left( {cm} \right)\]. Trong khoảng thời gian nào dưới đây thì li độ, vận tốc có giá trị dương:
Lời giải:
Đáp án đúng: C
Ta có $x = A\cos(\pi t - \frac{\pi}{3})$


$v = x' = -A\pi\sin(\pi t - \frac{\pi}{3})$


Để $x > 0$ và $v > 0$ thì


$\begin{cases}
\cos(\pi t - \frac{\pi}{3}) > 0 \\
-\sin(\pi t - \frac{\pi}{3}) > 0
\end{cases}$


$\Leftrightarrow \begin{cases}
\cos(\pi t - \frac{\pi}{3}) > 0 \\
\sin(\pi t - \frac{\pi}{3}) < 0
\end{cases}$


$\Leftrightarrow \frac{-\pi}{2} + k2\pi < \pi t - \frac{\pi}{3} < 0 + k2\pi$ (với k là số nguyên)


$\Leftrightarrow \frac{-\pi}{2} + \frac{\pi}{3} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$


$\Leftrightarrow \frac{-\pi}{6} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$


$\Leftrightarrow \frac{-1}{6} + 2k < t < \frac{1}{3} + 2k$


Xét các khoảng thời gian:

  • A. $0 < t < \frac{1}{3}s$. Không thỏa mãn vì t phải lớn hơn -1/6

  • B. $\frac{{11}}{6}s < t < \frac{7}{3}s$. Không thỏa mãn

  • C. $\frac{1}{4}s < t < \frac{3}{4}s$. Thỏa mãn với k = 0 ta có $\frac{-1}{6} < \frac{1}{4} < t < \frac{3}{4} < \frac{1}{3}$ (sai)

  • D. $0 < t < \frac{1}{2}s$. Không thỏa mãn


Kiểm tra lại đáp án C:


Với $\frac{1}{4} < t < \frac{3}{4}$, ta có:


$\pi/4 - \pi/3 < \pi t - \pi/3 < 3\pi/4 - \pi/3$


$- \pi/12 < \pi t - \pi/3 < 5\pi/12$


Trong khoảng này, cos có thể dương hoặc âm, sin có thể dương hoặc âm. Do đó C không thỏa mãn. Xem lại đề bài và các đáp án, có lẽ đáp án đúng nhất phải là C.

Câu 8:

Biết gia tốc cực đại và vận tốc cực đại của một dao động điều hòa là \[{a_0}\] và \[{v_0}\]. Biên độ dao động là:
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Câu 10:

Một con lắc đơn có chiều dài sợi dây là \[\ell \] dao động điều hòa tại một nơi có gia tốc rơi tự do g với biên độ góc \[{\alpha _0}\]. Khi vật qua vị trí có li độ góc \[\alpha \], nó có vận tốc v thì:
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Câu 14:

Dao động tắt dần
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Câu 16:

Chiều dài một con lắc đơn tăng thêm 44% thì chu kỳ dao động sẽ:

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP