Câu hỏi:
Một vật dao động điều hòa có phương trình: \[x = A\cos \left( {\pi t - \frac{\pi }{3}} \right)\left( {cm} \right)\]. Trong khoảng thời gian nào dưới đây thì li độ, vận tốc có giá trị dương:
Trả lời:
Đáp án đúng: C
Ta có $x = A\cos(\pi t - \frac{\pi}{3})$
$v = x' = -A\pi\sin(\pi t - \frac{\pi}{3})$
Để $x > 0$ và $v > 0$ thì
$\begin{cases} \cos(\pi t - \frac{\pi}{3}) > 0 \\ -\sin(\pi t - \frac{\pi}{3}) > 0 \end{cases}$
$\Leftrightarrow \begin{cases} \cos(\pi t - \frac{\pi}{3}) > 0 \\ \sin(\pi t - \frac{\pi}{3}) < 0 \end{cases}$
$\Leftrightarrow \frac{-\pi}{2} + k2\pi < \pi t - \frac{\pi}{3} < 0 + k2\pi$ (với k là số nguyên)
$\Leftrightarrow \frac{-\pi}{2} + \frac{\pi}{3} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-\pi}{6} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-1}{6} + 2k < t < \frac{1}{3} + 2k$
Xét các khoảng thời gian:
Với $\frac{1}{4} < t < \frac{3}{4}$, ta có:
$\pi/4 - \pi/3 < \pi t - \pi/3 < 3\pi/4 - \pi/3$
$- \pi/12 < \pi t - \pi/3 < 5\pi/12$
Trong khoảng này, cos có thể dương hoặc âm, sin có thể dương hoặc âm. Do đó C không thỏa mãn. Xem lại đề bài và các đáp án, có lẽ đáp án đúng nhất phải là C.
$v = x' = -A\pi\sin(\pi t - \frac{\pi}{3})$
Để $x > 0$ và $v > 0$ thì
$\begin{cases} \cos(\pi t - \frac{\pi}{3}) > 0 \\ -\sin(\pi t - \frac{\pi}{3}) > 0 \end{cases}$
$\Leftrightarrow \begin{cases} \cos(\pi t - \frac{\pi}{3}) > 0 \\ \sin(\pi t - \frac{\pi}{3}) < 0 \end{cases}$
$\Leftrightarrow \frac{-\pi}{2} + k2\pi < \pi t - \frac{\pi}{3} < 0 + k2\pi$ (với k là số nguyên)
$\Leftrightarrow \frac{-\pi}{2} + \frac{\pi}{3} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-\pi}{6} + k2\pi < \pi t < \frac{\pi}{3} + k2\pi$
$\Leftrightarrow \frac{-1}{6} + 2k < t < \frac{1}{3} + 2k$
Xét các khoảng thời gian:
- A. $0 < t < \frac{1}{3}s$. Không thỏa mãn vì t phải lớn hơn -1/6
- B. $\frac{{11}}{6}s < t < \frac{7}{3}s$. Không thỏa mãn
- C. $\frac{1}{4}s < t < \frac{3}{4}s$. Thỏa mãn với k = 0 ta có $\frac{-1}{6} < \frac{1}{4} < t < \frac{3}{4} < \frac{1}{3}$ (sai)
- D. $0 < t < \frac{1}{2}s$. Không thỏa mãn
Với $\frac{1}{4} < t < \frac{3}{4}$, ta có:
$\pi/4 - \pi/3 < \pi t - \pi/3 < 3\pi/4 - \pi/3$
$- \pi/12 < \pi t - \pi/3 < 5\pi/12$
Trong khoảng này, cos có thể dương hoặc âm, sin có thể dương hoặc âm. Do đó C không thỏa mãn. Xem lại đề bài và các đáp án, có lẽ đáp án đúng nhất phải là C.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026
