Cơ năng của vật dao động điều hòa được tính bằng công thức: $W = \frac{1}{2} m \omega^2 A^2 = \frac{1}{2} m (2\pi f)^2 A^2 = 2\pi^2 m f^2 A^2$. Do đó, cơ năng tỉ lệ thuận với bình phương tần số dao động.
Để li độ $x > 0$ thì $\cos(\pi t - \frac{\pi}{3}) > 0$. Điều này xảy ra khi $-\frac{\pi}{2} < \pi t - \frac{\pi}{3} < \frac{\pi}{2}$, tức là $-\frac{1}{2} < t - \frac{1}{3} < \frac{1}{2}$ hay $-\frac{1}{6} < t < \frac{5}{6}$.
Để vận tốc $v > 0$ thì vật phải chuyển động theo chiều dương, tức là pha dao động phải nằm trong khoảng $(-\pi/2, \pi/2)$. Vì $v = x' = -A\pi \sin(\pi t - \frac{\pi}{3})$, nên để $v > 0$ thì $\sin(\pi t - \frac{\pi}{3}) < 0$. Điều này xảy ra khi $\pi < \pi t - \frac{\pi}{3} < 2\pi$, tức là $\frac{4}{3} < t < \frac{7}{3}$.
Vậy, để cả li độ và vận tốc đều dương, ta cần $\frac{4}{3} < t < \frac{5}{6}$ và $t < \frac{7}{3}$. Kết hợp lại, ta có $\frac{11}{6} < t < \frac{7}{3}$ (vì $\frac{4}{3} = \frac{8}{6}$ và $\frac{5}{6}$ loại do $t > 4/3$).