ADMICRO
Giải phương trình: \(\dfrac{{{x^2} - 1}}{3} = 2\left( {x + 1} \right)\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 8
Lời giải:
Báo sai\( \dfrac{{{x^2} - 1}}{3} = 2\left( {x + 1} \right)\\
\Leftrightarrow {\mkern 1mu} \dfrac{{{x^2} - 1}}{3} - \dfrac{{6\left( {x + 1} \right)}}{3} = 0\\
\Leftrightarrow {x^2} - 1 - 6\left( {x + 1} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {x - 1} \right) - 6\left( {x + 1} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {x - 1 - 6} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {x - 7} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
x - 7 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 7
\end{array} \right.
\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK