Giả sử \(\frac{{\sin \alpha }}{6}\), \(\cos \alpha \), \(\tan \alpha \) theo thứ tự đó là một cấp số nhân. Tính \(\cos 2\alpha \).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(\cos \alpha \ne 0 \Leftrightarrow \alpha \ne \frac{\pi }{2} + k\pi \).
Theo tính chất của cấp số nhân, ta có: \({\cos ^2}\alpha = \frac{{\sin \alpha }}{6}.{\mkern 1mu} \tan \alpha \Leftrightarrow 6{\cos ^2}\alpha = \frac{{{{\sin }^2}\alpha }}{{\cos \alpha }}\).
\(\begin{array}{l} \Leftrightarrow 6{\cos ^3}\alpha - {\sin ^2}\alpha = 0\\ \Leftrightarrow 6{\cos ^3}\alpha + {\cos ^2}\alpha - 1 = 0\\ \Leftrightarrow \cos \alpha = \frac{1}{2} \end{array}\)
Ta có:
\(\cos 2\alpha = 2{\cos ^2}\alpha - 1 = 2.\,{\left( {\frac{1}{2}} \right)^2} - 1 = - \frac{1}{2}\)
Đề ôn tập Chương 3 Đại số & Giải tích lớp 11 năm 2021
Trường THPT Marie Curie