ADMICRO
Cho hàm số sau \(y = \frac{{{x^2} + 3}}{{x + 1}}\). Nếu\(y' > 0\) thì x thuộc tập hợp nào sau đây:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có
\(\begin{array}{l}y' = \frac{{2x\left( {x + 1} \right) - \left( {{x^2} + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ = \frac{{2{x^2} + 2x - {x^2} - 3}}{{{{\left( {x + 1} \right)}^2}}}\\ = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)
\(\begin{array}{l}y' > 0 \Leftrightarrow \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}} > 0\\ \Leftrightarrow {x^2} + 2x - 3 > 0\\ \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {1; + \infty } \right)\end{array}\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK