ADMICRO
Cho đường tròn (O;R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì IC = CM. Độ dài OM tính theo bán kính là:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 9
Lời giải:
Báo sai+) Ta có:
\( \widehat {CIM} = \frac{1}{2}\widehat {IOC}\) (góc tạo bởi tiếp tuyến và dây cung với góc ở tâm chắn cung IC) \( \to \widehat {IOC} = 2\widehat {CIM}\)
Lại có \( \widehat {OCI} = \widehat {CIM} + \widehat {CMI}\) (do ΔCMI cân tại C)
Do đó ΔOIC đều (vì \(\widehat {OIC} = \widehat {IOC} = \widehat {OCI} )\to \widehat {IOM} = {60^0}\)
+) Xét ΔOIM vuông tại I có: \( cos\widehat {IOM} = \frac{{OI}}{{OM}} = \frac{R}{{OM}} = \frac{1}{2} \Rightarrow OM = 2R\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK