ADMICRO
Cho dãy \(\left( {{u_n}} \right):{u_1} = {{\rm{e}}^3},{u_{n + 1}} = u_n^2,k \in {N^*}\) thỏa mãn \({u_1}.{u_2}...{u_k} = {{\rm{e}}^{765}}\). Giá trị của k là:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 11
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có \({u_n} = {{\rm{e}}^{{v_n}}}\), với \({v_n} = {3.2^{n - 1}}, n \in N^*\)
\({v_1} + {v_2} + ... + {v_k} = 3.\frac{{{2^k} - 1}}{{2 - 1}} = 3\left( {{2^k} - 1} \right)\)
\({v_1} + {v_2} + ... + {v_k} = 3.\frac{{{2^k} - 1}}{{2 - 1}} = 3\left( {{2^k} - 1} \right)\)
Suy ra \(3\left( {{2^k} - 1} \right) = 765 \Leftrightarrow {2^k} - 1 = 255\)
\( \Leftrightarrow {2^k} = 256 \Leftrightarrow k = 8\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề ôn tập Chương 3 Đại số & Giải tích lớp 11 năm 2021
Trường THPT Marie Curie
30/11/2024
4 lượt thi
0/30
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK