Cho 5 chữ số 1, 2, 3, 5, 6. Lập các số tự nhiên gồm 3 chữ số đôi một khác nhau từ 5 chữ số đã cho. Tổng tất cả các số lập được bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTừ 5 chữ số 1, 2, 3, 5, 6 ta lập được \(A_5^3 = 60\) số có 3 chữ số đôi một khác nhau.
Tổng các chữ số 1, 2, 3, 5, 6 là: \(1 + 2 + 3 + 5 + 6 = 17\).
Gọi số tự nhiên có 3 chữ số lập được là \(\overline {abc} \).
- Trong 60 số lập được ở trên, số lần xuất hiện của mỗi số 1, 2, 3, 5, 6 ở mỗi vị trí \(a,\,\,b,\,\,c\) là \(A_4^2 = 12\) lần.
Chẳng hạn, số lần xuất hiện số 1 ở vị trí \(a\) bằng số cách chọn \(\overline {bc}\) từ 4 số \(2,3,5,6\) và bằng \(A_4^2 = 12\) lần, tương tự số 1 xuất hiện ở vị trí \(b\) \(A_4^2 = 12\) lần, ở vị trí \(c\) là \(A_4^2 = 12\) lần.
Vậy tổng của 60 số lập được là: \(12.(1+2+3+5+6).\left( {{{10}^2} + {{10}^1} + {{10}^0}} \right) = 22644\).
Chọn A.
Đề thi giữa HK1 môn Toán 11 năm 2022-2023
Trường THPT Nguyễn Hiền