ADMICRO
Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y = \sqrt x \) và \(y = \root 3 \of x \)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Môn: Toán Lớp 12
ZUNIA12
Lời giải:
Báo saiPhương trình hoành độ giao điểm của hai đồ thị là
\(\sqrt x = \root 3 \of x \Leftrightarrow x = 0;x = 1\)
Trên đoạn \(\left[ {0;1} \right]\) thì \(\root 3 \of x \ge \sqrt x \) nên:
\(S = \int\limits_0^1 {\left( {\root 3 \of x - \sqrt x } \right)} dx = \int\limits_0^1 {\left( {{x^{{1 \over 3}}} - {x^{{1 \over 2}}}} \right)} dx\) \( = \left. {\frac{{{x^{\frac{4}{3}}}}}{{\frac{4}{3}}} - \frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right|_9^1\) \( = \left. {\left( {{3 \over 4}{x^{{4 \over 3}}} - {2 \over 3}{x^{{3 \over 2}}}} \right)} \right|_0^1 = {3 \over 4} - {2 \over 3} = {1 \over {12}}\)
ZUNIA9
AANETWORK