Cho f(x); g(x) là hai hàm liên tục trên đoạn [-1;1]. f(x) là hàm chẵn, g(x) là hàm lẽ . Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhacqGH % 9aqpcaaI1aaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aaaa!40EB! \int\limits_0^1 {f\left( x \right){\rm{d}}x = 5} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhacqGH % 9aqpcaaI3aGaaGPaVdWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaaa % a!4279! ; \int\limits_0^1 {g\left( x \right){\rm{d}}x = 7\,} \). Mệnh đề nào sau đây sai ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì f(x) là hàm chẵn nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhacqGH % 9aqpcaaIYaaaleaacqGHsislcaaIXaaabaGaaGymaaqdcqGHRiI8aO % Waa8qCaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeiz % aiaadIhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaaa!4B13! \int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x = 2} \int\limits_0^1 {f\left( x \right){\rm{d}}x} \) = 2.5 = 10
Vì g(x) là hàm lẻ nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhacqGH % 9aqpcaaIWaaaleaacqGHsislcaaIXaaabaGaaGymaaqdcqGHRiI8aa % aa!41D5! \int\limits_{ - 1}^1 {g\left( x \right){\rm{d}}x = 0} \)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WadaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHRaWk % caWGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa % GaaeizaiaadIhacqGH9aqpcaaIXaGaaGimaaWcbaGaeyOeI0IaaGym % aaqaaiaaigdaa0Gaey4kIipaaaa!48D5! \int\limits_{ - 1}^1 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x = 10} \) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WadaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHsisl % caWGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa % GaaeizaiaadIhacqGH9aqpcaaIXaGaaGimaaWcbaGaeyOeI0IaaGym % aaqaaiaaigdaa0Gaey4kIipaaaa!48E0! \int\limits_{ - 1}^1 {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x = 10} \) nên D sai