Tính \[I = \mathop {\lim }\limits_{x \to 0} {\left( {\cos x + {{\sin }^2}x} \right)^{\frac{1}{{{{\sin }^2}x}}}}\]
Đáp án đúng: B
Ta có:
\(I = \mathop {\lim }\limits_{x \to 0} {\left( {\cos x + {{\sin }^2}x} \right)^{\frac{1}{{{{\sin }^2}x}}}}\)
\(= \mathop {\lim }\limits_{x \to 0} {\left( {1 + (\cos x - 1) + {{\sin }^2}x} \right)^{\frac{1}{{{{\sin }^2}x}}}}\)
\(= \mathop {\lim }\limits_{x \to 0} {\left[ {{{\left( {1 + (\cos x - 1) + {{\sin }^2}x} \right)}^{\frac{1}{{(\cos x - 1) + {{\sin }^2}x}}}}} \right]^{\frac{{(\cos x - 1) + {{\sin }^2}x}}{{{{\sin }^2}x}}}}\)
\(= \mathop {\lim }\limits_{x \to 0} {e^{\frac{{(\cos x - 1) + {{\sin }^2}x}}{{{{\sin }^2}x}}}}\)
Ta tính:
\(L = \mathop {\lim }\limits_{x \to 0} \frac{{(\cos x - 1) + {{\sin }^2}x}}{{{{\sin }^2}x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\cos x - 1}}{{{{\sin }^2}x}} + 1\)
\(= \mathop {\lim }\limits_{x \to 0} \frac{{ - 2{{\sin }^2}\frac{x}{2}}}{{{{\sin }^2}x}} + 1 = \mathop {\lim }\limits_{x \to 0} \frac{{ - 2{{\sin }^2}\frac{x}{2}}}{{4{{\sin }^2}\frac{x}{2}{{\cos }^2}\frac{x}{2}}} + 1 = - \frac{1}{2} + 1 = \frac{1}{2}\)
Vậy \(I = {e^{\frac{1}{2}}} = \sqrt e \)